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ABSTRACT

The objective of this work is to present a general non-
1inear mathematical model describing the global behavior of
a compliant riser idealized as a slender, non-rotationally
uniform rod with bending, extensional and torsional degrees
of freedom. This model includes the effects of external and

internal pressure and speed of the internal fluid on the

system,
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NOMENCLATURE
a absolute acceleration of C,3=[a%,a%,a"]-U"
Ai,AO;Ab total inner and outer cross-sectional area of riser
tubes; total outer cross-sectional area of riser
tubes and buoyancy modules
5 unit vector in binormal direction
Bb buoyancy per unit length of buoyancy modules in water
B* p IR, for y<h, and zero otherwise
c mean internal fluid speed; for our application pic2<<p
¢ rotation matrix, see equation (II.14); or centroid of a
cross-section
D maximum dimension of a cross-section
e strain
E Young's modulus
EA extensional rigidity
EIbb,EInb bending rigidity of a cross-section around B; cross-product

of bending rigidity around n and B
EIXX,EIW,EIxy bending rigidities of a cross-section around x, y and the

cross-product of bending rigidity around x and y

EIEE,EInn maximum and minimum bending rigidities of a cross-section
EIE‘n cross-product of bending rigidity around'E and ﬁ
e18; e effective rigidities EIEE-cEJEE;EI”“-cZJ?”

f orientation angle, see Figure B.1
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NOMENCLATURE (continued)

internal forces, F'=[T',0%,Q7]-U"; for F see equation (11.92)
external hydrodynamic force per unit length (excluding
gravity effects); ?H=[Fﬁ,Fﬁ,FH]'U"
force per unit length due to internal flow (excluding
gravity effects)
acceleration of gravity
torsional and effective torsional rigidity, GIP—ch;PC
internal fluid and salt water elevations above the axes
origin
+ >
rR,c Y Hic
angular momentum per unit length about C of internal fluid;

_).
H

riser materials and buoyancy modules

mass inertia per unit Tength tensor of riser material and
buoyancy modules: JR=diag[JEC,JE£,JR”]; and internal fluid
Ji=diag[J$C,J§g,J?n], where diag[.] stands for diagonal
matrix

direction cosines of b with respect to szﬁ

unstretched riser length, buoyancy module length

(W +H, ) /9, (Hp#H+H, )/ g

restoring moment {MC,ME,MH]-U“

external hydrodynamic moment per unit length

moment per unit Tength due to internal fluid flow

bending moment projections along nand b

torsional and bending moments around E and ;
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NOMENCLATURE {continued)

order of flexural mode

unit vector in normal direction

internal overpressure due to well (i.e. total internal
static pressure minus p%

internal pressure due to gravity, pig(hi-y)

external pressure due to gravity, pwg(hw—y)

tension in riser material

shear force in the E and ﬁ direction

radius

inner and outer radii

position vector of an arbitrary point on the riser center-
line

position vector of the center of mass of a differential
internal fluid element

Reynold's number for internal fiuid flow

stretched and unstretched length of the centerline

surface of the materials of the cross-section participating
in bending

time

unit vector in tangent{al direction

T'=P+p0A0-p%A1; T = effective ténsion, see equation (I11.97}
radial displacement in riser material

array of unit vectors [T,j,K]T

] I ¢
array of unit vectors [z,£,n]




<}

= = e

Wp Wi MR

Xa2YsZ

x1’x2’x3

10

NOMENCLATURE (continued)

absolute velocity of C,v=[v®,v®,v"]-U"

constant volume flow rate of the internal fluid
effective weight per unit length, N=HR+wi+Hb-Bb-B*
average effective weight per unit length in water
buoyancy module material, internal fluid and riser
material weights per unit length

coordinates of C in the inertial frame
coordinates, see equation B.2

coordinates of C
direction cosines of

with respect to U

direction cosines of n with respect to U

oy Sy ohy

direction cosines of b with respect to U

structural damping force per unit length

strains in radial, circumferential and axial directions
structural damping moment per unit length

curvature of the centerline

Poisson's ratio

kinematic viscosity of the internal fluid

internal fluid and salt water densities

stresses in radial, circumferential and axial directions
geometric torsion

Euler angles, see Figure II.1

Euler angles of internal fluid element
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NOMENCLATURE {continued)

orientation angle, see Figure A.1

vector of the angle of infinitesimal rotation of the

system CEEK
absolute angular velocity of CzEn, frame, $=[mc,m5,m”]-u",
and of internal fluid element $f=[wf’c,wf’g,wf’n]-U“
vector rate of rotation of CZEn frame along the rod,

&=[at,05, 0" u
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CHAPTER I
INTRODUCTION AND OUTLINE

Compliant risers are assemblages of pipes with very small overall
bending rigidity used to convey oil from the ocean floor or a subsur-
face buoy to a surface platform, see Figures I.1 to 1.4. A compliant
riser is permitted to acquire large static deformations because of its
small bending rigidity and readjusts its configuration in response to
large motions of the supporting platforms, to which it is rigidly con-
nected, without excessive stressing. Compliant risers have been used
successfully in protected waters in buoy loading stations for tankers.
Extension of shallow water concepts to deepwater have been proposed by
the industry [1 to 8] as alternatives to conventional production risers
because they simplify the overall production system.

The purpose of this work is to provide a general non-linear mathe-
matical model describing the global behavior of a compliant riser idealized
as a slender non-rotationally uniform rod with bending, extensional and
torsional degrees of freedom in three dimensions and which includes the
effects of external and internal pressure and speed of the internal fluid on
the system.

This work is organized as follows: Chapter II includes the development
of the mathematical model, including
model assumptions
equilibrium eguations
constitutive relations
the relations between the rate of rotation of the body system

along the length, the Cartesian coordinates, acceleration,
velocity and angular velocity of the riser with the Euler angles
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- geometric compatibility relations

- the relations between the rate of rotation of the body system
along the length with the angular velocity

- the relations between the time rate of change of the angular
momentum per unit length with the angular velocities and
accelerations

- estimation of the force and moment per unit Tength due to the
internal flow

- analysis of the equilibrium eguations in the local principal
directions

- reduction of the governing equations to a first order system
of partial differential equations

- boundary and initial conditions

- specialization of the general governing equations for planar
response without torsion

Appendix A provides the definitions of the structural rigidities of a
cross-section. Appendix B providesderivation of the constitutive reia-
tions in the local tangential, normal and binormal system to the center-

line. Appendix C provides derivation of the constitutive relation between

effective tension and extensional strain of the centerline.




14
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Figure 1.2. Flexible Riser Production Concepts, adapted from [3]




15

WOT ASIEWELY

Figure 1.3. Catenary Compliant Riser, adapted from [6]

| g

Figure I.4. Buoyant Compliant Riser, adapted from [7]

= et e —



16

CHAPTER I1
DEVELOPMENT OF THE MATHEMATICAL MODEL

IT.1 MODEL ASSUMPTIONS

A mathematical model for the static behavior of slender elastic rods
undergoing large deformations with small strains is given in Love [9] and
Landau and Lifshitz [10]. The modification to account for dynamic effects
and the presence of a heavy fluid inside and outside the tube modelled as
a slender rod can be found in Nordgren [11] and Patrikalakis [12].

Methods for the computation of the motion of elastic rods with equal
principal stiffnesses and with torque applied at the ends can be found in
Nordgren {13,11] and without torque in Garrett [14].

In this work we extend the mathematical model derived in Nordgren [11]
and Patrikalakis [12] to allow the computation of the motion of an
assemblage of tubes modelled as a non-rotationally uniform slender elastic
rod with space varying torque. The model derived here also accounts for the
effects of steady internal flow in the non-linear regime. A related model
allowing study of the effects of steady internal flow on the linear dynamics
of planar naturally curved tubes can be found in Hi1l and Davis [15].

The basic assumptions of our model are listed below:

1. The compliant riser is modelled as a single non-rotationally uniform

rod rather than as an assemblage of interacting rods or shells. We

make this idealization in ordef to reduce the degrees of freedom and

to allow analysis of the global behavior of our system with the

currently available information on the structural characteristics
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of such structures. It is noted that for some compliant riser con-
figﬁrations, such as the one proposed by Panicker and Yancey [6],

the equations of the individual members composing the riser and the
interactions between members need to be analyzed. Certain phenomena,
for example, such as whirling instabilities of linear riser arrays,
Blevins [16] and Ottesen Hansen and Panicker [17], necessitate this
level of more detailed analysis.

2. The materials employed in the construction of different layers of
compliant risers are assumed to be homogeneous, isotropic and
linearly elastic.

3. Strains are assumed to remain uniformly small although deformations
may beccme large.

4. Shearing deformations are neglected [9 to 15]. This is justified be-
cause they are of order (Dn/L)2 compared to rotations of riser cross
sections after bending, where D,L are the diameter and the length of
the riser and n the order of the excited flexural mode. For typical
configurations D/L<<1 and n is small; i.e., low frequencies are excited.
This assumption implies that plane cross sections remain plane after
bending and normal to the neutral axis as in the Rayleigh slender beam
theory, see Crandall, et al. [18].

5. Thermal effects are neglected.

Assumption 1 implies strain continuity across layers of different

materials in a given assemblage of tubes.
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This idealization together with assumptions 2 to 5 allows the computation

of equivalent bending, extensional and torsional rigidities of a particular

cross section of the compliant riser, as it is shown in Appendix A. Two

values of the bending rigidity, E1%% and EI™ are required for each cross

section, where £ and n are the centroidal principal axes of the cross section

around which the bending rigidity is maximum and minimum, respectively.

The term centroid, C, of a cross section denotes the moment centroid of the

cross section with weighing factor the Young's modulus of the materials

participating in bending, see Crandall, et al. [19]. In this work we also

assume that

6. The centroid, C, defined above is also the mass centroid of the cross
section.

7. The axes r, £ and n are principal axes of the mass inertia of the cross

section, where ¢ is orthogonal to £ and n at the centroid C.

Further theoretical and experimental research might be necessary to
quantify the errors implied by the above list of assumptions, particularly
assumptions 1 to 5.

11.2 EQUILIBRIUM EQUATIONS

We define a basic right-handed orthogonal Cartesian inertial reference
frame Oxyz with corresponding unit vectors 1,3 and K, such that J is directed
vertically upwards, and an orthogonal right-handed body system szﬁ at each
cross section of the rod. Point O can be chosen as any point fixed with
respect to the earth. For convenience, however, we choose 0 to coincide

with the centroid, Co, of the lowest end cross section of the rod if C0 is
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fixed with respect to the earth or with its mean position if it is
allowed to move. The unit vector E is tangential to the centerline
of the riser. The centerline is defined as the continuous line that
joins all points C in the different cross sections of the rod. Each
cross section can be identified by the unstretched arc length of the
centerline measured from CO. The vector E points in the direction of
increasing arc lengths. The directions of E and ﬁ are chosen in the
previous section and point in such a way so that EEK are a right-handed
system. This system of axes is called the principal torsion-flexure
system of axes of the rod at each point C of the centerline, Love [9].
The equations of equilibrium of forces and moments acting on a

differential element ds of a compliant riser with centroid € are:

F;-wj+?H+?i+z=mC; (11.1)
Es FTXF A N 4 o - dﬁR’C/dt (11.2)
where  F' = [T', @5, Q'3.U"" (11.3)
ot = GERT (11.4)

TH =P+ pvo - piA; (I1.5)
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0, = 0,3 (11.6)
p% = D-ig(hi‘)') (11.7)
W= Moo+ W+ W - By-B (11.8)
mC = (Ui, )/g (11.9)

is the external hydrodynamic force per unit length excluding
the effects of static pressure due to gravity.
is the internal hydrodynamic force per unit length excluding

the effects of static pressure due to gravity.

restoring moment, MQE+MEg+Mnﬁ
" is the external moment per unit length
; is the moment per unit length due to the internal fluid flow
and & are structural damping force and moment per unit length
absolute acceleration of C
R.C is the angular momentum per unit length of the riser material

and buoyancy modules with respect to C
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P tension in the riser material
%, qQ" shear forces in the £ and n direction
po,p; static water and internal fluid pressures due to gravity

at elevation y(s)}

0P salt water and inner fluid density
g acceleration of gravity
hy s salt water and internal fluid heights above C0

wR’Ni’Nb Riser material, internal fluid and buoyancy module weights

per unit length

Bb Buoyancy per unit length due to buoyancy modules
B* Weight per unit length of displaced salt water by riser tubes
Ao’Ai Total outer and inner cross sectional areas of the riser.

Ai is assumed to be constant with s.

Subscript s denotes partial derivative with respect to s, the un-
stretched arc length of the centerline. d/dt denotes partial derivative
with respect to time for a (vector) quantity expressed in the inertial
frame. Equations (1) and (2) are valid within small strain theory
e=sg-1, where s*(s} is the stretched arc length of the centerline, see
assumption 3 and Love [9].

IT1.3 ANALYSIS OF DEFORMATION-CONSTITUTIVE RELATIONS
It is convenient to analyze the gpverning equations (1) and (2) in
the centroidal principal axes z, c% and Cn, because the compliant riser is

not rotationally uniform and because bending and torsion effects are included
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in our mathematical model. It is noted that the equations of con-
ventional marine risers, Patrikatakis [12], Bernitsas [20,21] and
cables, Triantafyliou [22], Triantafyllou and Bliek [23], Bliek [24]
and Triantafyllou, et al. [25] have been analyzed in the local
tangential, t=7, normal, %, and binormal, E, directions to the center-
line. The system ¥,n,B is convenient in the case of conventional
risers, because the bending moment is directed exclusively in the bi-
normal direction due to the rotational uniformity of the cross section,
Love [9]. In the case of cables where bending effects are usually
neglected and structural torsion is uncoupled from the other modes of
deformation, it is sufficient to examine the deformations of the center-
line, which can in turn be conveniently expressed in terms of the t.n.b
system. The interesting relation between an analysis in the CEEﬁ and
ctng systems for a non-rotationally uniform slender rod is presented in
Appendix B.

To describe flexural, extensional and torsional deformations of the
rod, it is convenient to divide the rod into infinitesimal elements of
stretched arc length ds*, each of which is bounded by two adjacent cross
sections. To each cross section we attach a local body system CEEH de-
fined in the previous section. It is assumed that if the centerline of
the rod is rectilinear and no torsion is applied, all systems, CZén, are
mutually parallel for all C along the rod. At any fixed time t, any two
adjacent systems CZE7 are rotated through an infinitesimal relative angle.
It is known that an infinitesimal angle of rotation can be regarded as a

vector parallel to the axis of rotation, Crandall, et al. [18]. Let d¢




23

be the vector of the angle of infinitesimal rotation of a system CZER
at s*+ds* relative to the system at s* at a fixed time t. The com-
ponents of d¥ are the angles of rotation about each of the coordinate
axes E,E,ﬁ. To describe the deformation we need to define the vector
rate of rotation of the coordinate axes system CZEE along the rod,

Love [9], Landau and Lifshitz [10]:

t-3,
where subscript s* denotes partial derivative with respect to the
stretched arc length s*. In all subsequent analysis, differentiations
with respect to s*, to determine components of ¢, will be replaced by
differentiation with respect to the unstretched arc length s of the
centerline, because the extensional strain of the centerline is assumed
small, e<<1, see assumption 3. A discussion of this approximation can
be found in Love [9]. Therefore, consistent with equations (1} and (2)

and our subsequent analysis, we will use

-> -
2= o (I11.10)

-

For the choice of axes Z,Z and n adopted in the previous section, the
=
following constitutive relations between the restoring moment M and o are

valid as a result of the basic assumptions 1 to 5:

ME = g1Pal, M8 = E186E, M = p1N (11.11)

where GIT, EI® and EI™" are the torsional and principal bending rigidities

of the cross section. Estimates of these rigidities can be obtained with
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the method outlined in Appendix A. The constitutive relation for ME and
M) are based on the basic approximation of siender rod theory, Love (9],
according to which the extensional strain due to bending parallel 7 at an
arbitrary material point of the cross section with coordinates £ and n,
is given by an—ﬂng. Equations (A.5) and the above expression for the
extensional strain due to Qg and Q" imply that this extensional strain
does not produce a net force along 7. An extensive discussion of the
validity of {(II.11) can be found in Love [9], pp. 389-395.

It is appropriate at this point to summarize the results of Appendix B
concerning the analysis of bending moment, M€E+M”ﬁ on the local normal and
binormal vectors to the centerline for a non-rotationally uniform rod. The

bending moment projections along B and © are given by

W= ek, M = —er™ (11.12)

where EIbb is the bending rigidity of the cross section about b, EInb is
the cross product of bending rigidity about % and B and K the curvature
of the centerline, Eisenhart [26]. Equation (11.12) implies, as stated
earlier, that in rotationally uniform rods, where Elnb=0, the bending
moment is exclusively directed in the b direction; i.e. M"'=0. This fact is,
for example, used in the derivations of Nordgren [13], Garrett [14],
Patrikalakis [12] and Kim [27].

In order to complete the governing equations, we need to derive the
constitutive relation between effective tension T and extensional strain, e,

of the centerline. This is done in Appendix C, where it is shown that

under a number of realistic assumptions

T=tAe (11.13)
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Relation {13) is an extension of the constitutive relation used in
cable models, Goodman and Breslin [28], Triantafyllou [22], Bliek [24]
and Triantafyllou, et al. [25] to include the effects of the internal
pressure. The term effective tension is introduced in Section II.12
and Appendix C.
11.4 RELATIONS BETWEEN & AND EULER ANGLES

In order to develop the above relation, we first introduce a set
of Euier angles which define the orientation of the Cfff,system with
respect to the inertial system G?EE. Figure I1.1 provides an illustra-
tion of the Euler angles ¢.,6 and ¢ used in this work.

The first rotation ¢ is performed around ¥ and brings (E1J§]j§]) =
3.,3.%) to (32,32,32) where ﬁ2=ﬁ]éﬁ. The second rotation ¢ is performed
around 22 and brings (Ez,fz,ﬁz) to (3,33,33) where §3=22. Finally, the
third rotation ¢ is performed around T and brings (E,§3,ﬁ3) to (Z,E.0).

From these definitions we can see that our body axes system is singular when
0 = + n/2,see Crandall, et al. [18]. This however is not a problem because
in our axes systems the value of & is always small and near zero throughout
the riser. This comes about from the fact that we expect the compliant
riser to be deployed so that 6 is approximately equal to zero at the lower
end in order to avoid excessive stressing. The values of & remain small
throughout the riser length because in our inertial axes system definition
we selected the predominant current direction to be in the o1J plane.

The system of Euler angles defined above also has the advantage that
one finite rotation ¢ about K provides a complete description of a general

two dimensional problem in the 0?3 ptane in the absence of torque. In

e —————e= =
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Figure 1I.1. Euler angles definition
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addition, this system has the advantage that slightly non-planar con-
figurations with torsion are described with one finite rotation ¢ and
small rotations & and ¢. Such configurations are very often encountered
in compliant riser systems proposed to date. Finally, the introduction
of Euler angles to describe the orientation of the body system facilitates
the expression of the external hydrodynamic forces and moments on a non-
rotationally uniform structure.

Following Goldstein [29], the complete 3x3 transformation matrix

C=[cij] between U=[?,j,f]T and U"=[E,g,*]T defined by
ut' = ¢-u (11.14)

can be easily obtained as the triple product of the three separate
rotations, each of which has a relatively simple matrix form. This pro-

cedure leads to

€y = cos8 cosé (I1.15.1)
= j 11.15.2
cyp = C0sO sind { )
Cqg = -5ind (11.15.3)
Cop = sing siny cosd - cosy sing (11.15.4)
= sind sinmp sing + cosy cosd (11.15.5)
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Cpy = €OSE siny (11.15.6)
C3y = SInO cosy cos¢ + siny sing (11.15.7)
€3, = sind cosy sing - siny cos¢ (11.15.8)
€33 = COSE cosy (11.15.9)

We are now in a position to relate the components of G with ¢s’es’

Ve and the Euler angles ¢,6 and y. These relations can be obtained

by noting that

-5 - - .]6
G = 9k + 88, + ¥ T (11.76)

Ez = [-sind, cos¢, 0]-U (11.17)

where Ez is defined in Figure II.1, and using equation (II.10) and (11.14}.
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The following results are derived by projecting (11.16) on Z.E and 3

respectively:
a° = yg - 9 sing (11.18)
Qb = 8¢ cosy + ¢ cosB siny (11.19)
QN = -6 sinp + ¢  cos® cosy (11.20)

I1.5 RELATIONS BETWEEN THE CARTESIAN COORDINATES OF C AND THE EULER ANGLES

Let

R = [x,y,2]U (11.21)

be the position vector of an arbitrary point C on the riser centerline.

The tangential vector, E, to the centerline can be found by

- _E (11.22)
L= Row

where s*(s,t) is the stretched arc length corresponding to point C with

Lagrangian coordinate, s, Eisenhart [26]. Using
e = s*‘ - 'I (11023)
3
we find that

7 = Es/(1+e) (I1.24)

which by using (I1.15.1) - {11.15.3) leads to
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Xg = (1+e) cos® cos¢ (11.25)
Y = (1+e)} cosb sing (11.26)
z, = -(1+e) sinS (11.27)

11.6 RELATIONS BETWEEN ACCELERATION, VELOCITY AND ANGULAR VELOCITY
AND EULER ANGLES

The absolute acceleration 3 of point € can, of course, be

evaluated as

T (11.28)
2 = Dxpps Yeeo Zpd'V :

Alternatively, we may calculate a by using the components of the
absolute velocity, ;, of C and angular velocity, 5, of the Cfgﬁ system
in the local Z,g,ﬁ directions. This formulation allows an easier
evaluation of the angular momentum {assumption 7) and of the external
force and moment terms for a non-rotationally uniform rod. The
simplification of the external force and moment terms is based on the
further assumption that the E,g,ﬁ directions are also principal directions
for the added mass/inertia tensor, see Newman [30].

We, therefore, let the absolute velocity of C be analyzed as

| 1.29
v = [V, &, VU (1 )
and, therefore, following Crandall, et al. [18], we obtain
’ *+ UEWTRLL
N L R RTELE P A R (11.30)
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where & is the absolute angular velocity of the EEH system. By

. - -
analyzing w and a as

MER TR K (11.31)

2 = [a%, a%, aNj-un (11.32)
we obtain:

a® = vZ 4 oV - WV (11.33)

aE = VE + v - BN (11.34)

a" = v+ e L GRS (1I.35)

The components of the angular velocity @ in the 7,Z and n directions
can be easily found in terms of time derivatives of Euler angles and
the Euler angles themselves. Following Landau and Lifshitz [31], we

note that

G=¢K+0f + 7 (11.36)
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Projecting (II1.36) on the local z,g,ﬁ'directions and using (I11.17) and

(11.14), we obtain:

r _ .

w = Yy - by sing (11.37)
wE = et cosy + ¢tcosssinw (11.38)
W = -Btsinw + ¢tcosecosw (11.39)

Note the similarity of {11.37) to (II.39) to (11.18) to (II.20), respec-
tively.
I1.7 GEQMETRIC COMPATIBILITY RELATIONS

These are relations connecting the space derivatives of the Z,Z,ﬁ
components of V, the components of 5,3 and the extensional strain, e,
of the centerline. These relations are easily obtained by rewriting (I11.24)
as §S=(1+e)E, taking a time partial derivative, substituting Et by v and
using the fact that Et=$xf, see Crandall, et al. [18]. This procedure

leads to

G’s = et‘;’ + {1+e) (ox?) (11.40)
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However, using (1I1.29)} and the relations

G = T, L =T, R = BA (11.41)

we can also write that

vg = [VgsVE.V2]°U" + ﬁx[vc,vg,vn]-v" (11.42)

Relations (II.41) can be found in component form in Love [9]. They
can be easily proved by noting that for a fixed time t, the changes of
vectors E,E and ﬁ between two adjacent cross sections of the centerline

can be written as

dz = d&xz, df = d@xZ, dn = ddxn (11.43)

where d8 is the vector of angle of infinitesimal rotation of the ZZn
system at s+ds relative to the system Egﬁ'at s, see Landau and Lifshitz [10].

Dividing (I11.43) by ds and using (I11.10), relations (II.41) are obtained.

Introducing

g = [a%,05,2-u" (11.44)

in (11.42) and eliminating v, between (I1.40) and (I1.42), we obtain the

compatibility relations in component form in the E,E and 7 directions.
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VE + ngn - ang = e, (11.45)
Ve At - gt = (T+e)w” (11.46)
v+ Q5E - oBvE = - (14e)w” (11.47)

Relations similar to (I1.45) to {11.47) in the local T.0 and b direc-
tions of the centerline of a cable can be found in Bliek [24] and
Triantafyllou, et al. [25].

11.8 RELATION BETEEN O AND
First we combine relations (11.18) to (II.20) to obtain:

0 = (2%siny + Qcosy)/cosé (11.48)
B, = obcosy - Dsiny (11.49)
v, = 08 + o sino (11.50a)
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Due to (II1.48) relation (II.50a) can be also rewritten as

Y, = QF + tana(ﬂgsinw + Qcosy) {11.50b)

In a similar manner relations (I1.37) to (11.39) can be combined to

give:

oy = (mgsinw + mncosw)/cqse {11.51)
et = wgcosw - wnsinw | (11.52)
by = w” + ¢,sing (11.53a)

bue to (11.51), relation (I1.53a) can be also rewritten as

by = W + tane(mgsinw + cosy) (11.53b)

Relations {I1I1.48), (II1.50b)}, {I1.51) and (1I.53b) provide an explicit
indication that 6 = + w/2 is a singular point of the ¢,8,y set of Euler
axes used in this work as stated in Section II.4. However, for the
reasons given in the above Section, & will be substantially different

from + /2 for all configurations studied here.
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The relations between 3 and » can be obtained by taking the partial
derivative with respect to time of equations (I1.18) to {II.20) and
using (I1.48) to (1I.53) to eliminate the partial derivatives of the

Euler angles with respect to s and t. This procedure leads to:

o = oF + of - Qb (11.54)
t 5

QE = w2 + Q"W - Q%W (11.55)
t S

o = o] ¢ ofub - ot (11.56)

1.9 EVALUATION OF dﬁR c/dt

-+

We analyze the vector, HR,C’ the angular momentum of the riser
material per unit length with respect to the center of mass and centroid
of each differential riser element in the local E,E and ﬁ directions
which, due to assumption 7, are also principal axes of the mass inertia

of the element:

o — g E n JHE Y :
HR,C - [HR,C,HR,C’HR,C] U (II-S?)
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where

L -3 55,5
HR,C = JR w (11.58)}
£ _ g 888

n - ymn
HR,C = JR w (II.GO)

see Crandall, et al. [18]. As with equation (I1I.30), we obtain:

- £ ' £ e
dH C/dt [HR C, ,HR c,’ R C, Ju't + mx[HR C,HR L ,c] ] (I11.61)

and therefore analyzing in the E,g and i directions we obtain:

dHg o/dt = IF%uf + (JE”-JE‘E)Mg n (11.62)
dHE cdt = JEE % + (2550 (11.63)
dHp oJdt = I + (J%E-Jéc)mgws (11.64)
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I1.10 ESTIMATION OF THE FORCE ?i PER UNIT LENGTH DUE TO INTERNAL FLOW
Let Ei be the position vector of the center of mass of a
differential internal fluid element defined as an infinitesimal cylinder
of cross sectional area Ai’ assumed constant with s, and height §s. We
further assume that the line of the centers of mass of all such fluid
elements coincides with the centerline of the riser and that W; is con-
stant with s. For each internal fluid element, we introduce a Lagrangian
coordinate So which is equal to the position $=S, of the fluid element
at some fixed time t , see Crandall, et al. [18]. Fluid elements possess
a mean flow velocity, ¢, where c=ﬁi/Ai and ?1 is the constant volume flow
rate of the internal fluid. At some time t, the position, s, of the fiuid

element is given by:

s =5, % c(t—to) {11.65)

This relation is valid for small extensional strains of riser centerline,
e<<l, and is, therefore, compatible with the degree of approximation
implied by assumption 3.

From compatibility of the internal fluid flow and the riser motion,

we gbtain
i
_P:_.I(so,t} = R{s,t) . (11.66)

where s is given by (II1.65) and E(s,t) is the position vector of the riser
centerline with respect to the inertial system. The compatibility relation
(11.16) is also implied in the derivation of Hill and Davis [15], although

they later restrict their attention to the linearized equations of motion.
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Equilibrium of forces for an internal fluid element leads to:

OARy  (5grt) = -Filsat) - Ay (pe), (11.67)

where subscript t denotes derivative with respect to time. The left-
hand side of equation (67) is the time rate of change of momentum per
unit length of the internal fluid element in the inertial system. The
term -?i(s,t) is force per unit length from the riser inner walls on

the fluid element which includes normal pressure and frictional com-
ponents. The term -Ai(p_f)s is the contribution of the overpressure, p,
on the two end cross sections of the differential element. The contri-
bution of gravity forces to the pressure and the overall equilibrium of
forces is properly taken into account in equation (1) due to the definition
of effective weight W and T'. Therefore, p, is indeed an overpressure
resulting from the pressure of the well. The value of p varies little
with s for the speeds and the geometries of interest in compliant risers.

For a cylindrical tube

64/Re. if Re. < 2300
1 P .2 1 Ll
Ps - 9. 2
A if Re; > 2300

where Re; = CDi/“i’ and A depends upon Rei and roughness, Schlichting [32].

The value of ) is always approximately below 0.08. Typical values indicate
+

that p,L/p<<1. Equation (11.67) allows the computation of Fi in terms of

-
the gross internal flow parameters P> Ai’ c and p and R(s,t) if the com-

patibility relation (I11.66) is employed to calculate ﬁi (so,t). Following
tt
Crandall, et al. [18] we find from (II.66) that
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> - -
Rit = Rt + cRS {11.68)
R, =R, +2R., +chk

itt =R, CRey *+ € R (I1.69)

In addition we may use the relation

L =Ry (I1.70)

valid for small extensiona) strains, e<<1, see assumption 3;

Zt = ox? (11.71)
-->
and 3= Ry (11.72)

where & is the absolute angular velocity of szﬁ, to obtain:

- P P, Ve (11.73)
'ltt s

Relations (I1.73) and (I1.67) imply that

-

> _ o 2\ r
Fils,t) = —oiﬂi(a+2cwxc) - As[{p*pye I3 (11.74)

The linearized versions of (I1.73) and (I1.74) can be found in Hill and

Davis [15] for a planar naturally curved tube of constant initial curvature.



47

IT.11 ESTIMATION OF THE MOMENT ;h PER UNIT LENGTH DUE TO INTERNAL FLOW

The derivations of this Section proceed as in Section II.10. We
start by using the Lagrangian coordinate So to identify internal fluid
elements, so that the position of the fluid element at time to is

f

$=S - At time t=t0, we define the Euler angles ¢f, 8 and wf of the

fluid element to be equal to the Euler angles of the riser at S i.e.

¢f(so,to)=¢(so,to);Bf(so.t0)=e(50,to),wf(so,t0)=w(so.to) (11.75)

At time t, we assume the following compatibility relations of the in-

ternal fluid flow and the riser motion:

67 (s ,t) = o(s,t) (11.76)
o7 (s,1) = 8(s,t) (11.77)
wf(so,t) = ¥(s,t) (11.78)

where s is given by (II.65). Relation (II.78) presupposes a non-circular
fluid cross section or more than one circular cross section. For one
circular tube, relation (II.78) is not valid in general but it could be
adopted in order to decrease the degrees of freedom of the system.

Given that angular velocities are obtained from combinations of first
time derivatives of the Euler angles, the angular velocity, Sf, of a
fluid element can be determined by

;f(so,t) = wis,t) + cfi(s,t) (11.79)



42

where s is given by (11.65). In the derivation of (11.79}), relations
(11.18) to {1I1.20), (I11.37)} to (I11.39) and (11.76)} to (11.78) have been

used. In component form equation {I1I1.79) gives:

FUET SUUER AL (11.80.1)
o8 = B+ et (11.80.2)
PREL IS Y (11.80.3)

where the dependencies on g2 S and t in (I11.79) have been omitted for
brevity. Relations (11.80) allow the calculation of the Z, % and 1

components of the angular fluid element acceleration by:

2
wf’% = w% + Cmg + CQE +c Qg (11.81.1)
2
wf’% = w% + ng + cQ% +C QE (11.81.2)
Z
wf’g = w? + cwz + CQ? +c 92 . (11.81.3)
r k£

It is convenient to eliminate wZ, wZ and w? from (11.81) using (II.54)

to {11.56) and, therefore, obtain:
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uf’% = w% + 2CQE + c(ang—ngn) + czﬂg (11.82.1)
mf’f = wf + 2cQ§ + c(bu-0"wb) + ng'sg (11.82.2)
mf’Ic‘ = w? + 2cq) + c(28ut-0%ub) + czng (11.82.3)

Relations (11.80) and (I1.82) allow calculation of the angular
momentum per unit length, ﬁi,c of a differential fluid element in the
riser with respect to C. In addition, since the moment per unit
length of the normal pressure forces on the two cross sections of
the fluid element, -2 X pAiE, is zero, equilibrium of moments for

dH . /d - -M- ( . )

where ﬁi is the moment exerted by the internal flow on the riser tubes,
appearing in equation (II.2}). Assuming that Z, E and n are the principal
axes of mass inertia of the fluid element, we may write that the components

of

" = 4 E n ]
Hi,c (R, & By o B c] v (11.84)
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are given by

N I 4
Hi,c = 5w (11.85)

£ & T,E
Hy,c = 9w (11.86)

g, N = gmfen
i = Y5 (11.87)

As with equations (I1.62) to (11.64) we obtain

aHE /dt = 35 ABE (an-085)u" o5 (11.88)
g _ ke f.8 4 .tz ny fan fl2 (I11.89)

dHi,c/dt =Jiw g (d7°-d5 o W

aH] /dt = J?”wf’g + (J%E-J?G) ML (11.90)

where relations (11.80) and (I11.82) may be used to express the com-
ponents of the time rate of change of the fluid angular momentum in
terms of w and .
I1.12 REDUCED FORM OF THE GOVERNING EQUATIONS

Equations (I1.74} and (11.83) can be used to eliminate ?i and ﬁi

from equations {I1I1.1) and (II.2). Inspection of equations {I1.1), (II.3),
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(I1.5) and (II.74) leads to the conclusion that the follewing definitions

provide considerable simplification of equation (I11.1):

T=T - (pro,cPIA, (11.91.1)
or using (11.5)
T = pap A -(pl+pro cdA, (11.91.2)
F = [1,05,070 (11.92)
m = m>+p.A. (11.93)

The simplified form of the equation of forces, (II.1), is:
> > -
F-WiF vl = mav2ep Ay BXT (11.94)

In addition, defining
P I (11.95)
He = HR,c * Hi,c

and using {(I1.83) and the fact that WxF = EXF, the equation of moments,

(I1.2), obtains the simplified form:

" F A SR 11.96
M ATxF + M8 = dH/dt (11.96)

b e s W e o e e ammmemnans
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The new term, T, appearing in equations (11.91) and (11.92) is called
effective tension and is a generalization of the term used in
Bernitsas [20,21,33], Nordgren [11] and Patrikalakis [12] to include
the effects of the internal flow.

The components of dﬁb/dt in the T, € and 1 directions can be ob-
tained by combining equations (II.62) to (11.64), (II.88) to (II1.90)

and (II1.95). Introducing the following definitions:

3% - ch N J?z (11.97)
JEE - Jga + Jgs (11.98)
Jm = JH” + J?” (11.99)

and also using {(11.80) and (11.82), we obtain

G

AN 4 N4 nn_1EEvEAN
dt = C [Ji QS + (Ji Ji )Q 9 ] +

+ chmi + (Jnn-Jgg)wgwn +

e[ (208 + 2P0y + (0M-058) (@"ubeta)] (11.100)

The corresponding expressions in the Z and T directions can be obtained

cyclically:
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2 EELE To_ M aTaGe
¢ [Ji Q; + (J1 'Ji '] +

o
e+ |0y

+ JEEwE + (JCC_Jﬂn)wﬂwC +

+ c[355(207 + 2%M-0%) + (955-007) (%)) (11.101)

C CZEJUHQH + (J?E_J?E)QCQ&] +
1 S 1 1
Jnnwg + (35E-05) 5S4

+ c[aM(2a] + QBub-qbub) + (J%E—Jgg)(ﬂgmc+ﬂgmg)] (11.102)

I1.13 ANALYSIS OF EQUILIBRIUM EQUATIONS IN THE LOCAL E, E AND ﬁ DIRECTIONS
Using (I1.11}, (II.14), (11.41), (I11.92), (11.94), (I1.96) and
{I1.100) to (1I.102), the equations of equilibrium of forces and moments

, > + ., . .
in the E, £ and n directions can be written as
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EaN Nes _ Tial = mab
TS -Q'+ QR Nc12 + FH+A ma

E _ oot n Eirl = ma’ n

n & £nG Ny AN n £
Qs - 10 + QP - wc32 + FH+A ma - chiAiw

Pat nn_gt1EEy NG T
(6152°) + (EI -EIg )0 + My + o° =

Jﬁcwi v (IM-g88) B 4

cLaB5(aal + alut-a"d) + (31-35%) (@uFe0%™) ]

(Elgiﬁg)s + (Glg - EIQ”)QCQ” S0+ eb =
Jiiw% + (J5° - MW" +
(56 (20] + %) # (955-0TM) (0% ™2 ") ]
(e1a") - (GIf - E1sh)etat + o + 0" =
Jnnmz + (JEE_JCC)waE +

LM (2] + abub-gtef) + (3579 ) (ool

(11.103)

{11.104)

(11.105)

(11.7086)

(11.107)

(11.108)
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where the effactive torsional and bending rigidities are defined by

61° = 617 - c2J§C (11.109)
e1sh = E1ft - A% (11.110)
EIT" = 1™ - CZJ?“ (11.111)

In the derivation of {II.106) to (I1.108) the internal cross sectional
area of the riser has been assumed to be constant with s as in
Sections (11.10) and (I11.11). For compliant risers the differences
between GIP and G1P, EIZ® and EI%, and EIJ" and EI™ are negligible.
For typical configurations, e.g., de Oliveira and Morton [7], the
difference is of order piCZ/E<<]. Similarly the right-hand sides

of equations (I1.106) to (11.108) are expected to be small for most
practical circumstances {low frequencies). These terms are commonly
neglected in the simpler Euler beam theory, see Crandall, et al. [18],
Nordgren [11,13] and Garrett [14]. In the case of compliant risers sub-
jected to rotating and reversing currents, the effects of the first two
terms of the right-hand side of equation {I1.106), which model torsional

inertia, need to be investigated.

I1.14 GOVERNING EQUATIONS AS A FIRST ORDER SYSTEM OF PARTIAL DIFFERENTIAL

EQUATIONS

It is convenient to convert the governing equations to a first order

system of partial differential equations of the following symbolic form:

- -+ >
W = F(s,t,w) + Als) Wy

{11.112)
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where
Hsat) = D (5,8), Wp(5:8), —ons y(s,8]' (11.113)

is the solution vector;

Hs,tW) = [F(5,6,80).6,(s,8.%), ..., fy(s,t, 01 (11.114)

a given (nonlinear) vector function of s, t and w: A(s) a NxN matrix,
with elements which are functions of s.

It is further convenient to choose

v o= [1,05,07:05,05,0754,6,03,,25

VB E VSR sr T - (I1.15)

as our solution vector with N=19 unknown scalar variables. Nineteen
independent equations are needed for a complete formulation of problem.
These equations are enumerated below.
1. Three force equations (11.103) to (II.105), where
e equations (I1.75) are used to replace Cip» i=1,2,3 in terms
of 2,8,y
e cquations {I1.33) to (I1.35) are used to replace the accelera-
z

tion components o, of and " in terms of v&,v&,v" and

mé,mg and wn;
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¢ the components of the external force per unit length

are considered functions of s, t, ac, ag, an, 044,

N
X,¥:2 Vo, vE, v, W8, Wf, WM

e the components of the structural damping force per unit
length % are considered functions of s, t and velocity

components,
Three moment equations (II.106) to (I1.108)} where

e M5, the external moment per unit length around 7 is con-

H!
sidered function of s, t, ¢,9,¥, X,¥,2, vc,vg,vn

UJC, LUE, an;

e the components of the structural damping moment per unit
length, 5, are considered functions of s, t and the
angular velocity components,

Three eguations (11.48) to (11.50) relating the spatial
derivatives of the Euler angles with the Euler angles and
the components of 8.

Three equations (11.25) to (11.27) relating the spatial
derivatives of the Cartesian coordinates x, y and z with Euler
angles where e is replaced by T/EA.

Three compatibility relations (I1.45) to (11.47), where
we replace e by T/EA using equation (I1.13).

Three relations (I1.54) to (11.56) relating the components of
&.5 and their time and spatial derivatives respectively; and

The following equation

sg =1+ T/EA (I1.116)
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resulting by introducing (I1.13) in {I1.23) to eliminate e. For the
range of strains, e, analyzed in this work, the difference between s*
and s is small, see assumption 3.

Estimates of the static response can be obtained by setting the
components of v and equal to zero in the governing equations, and
replacing the external loads with their mean values. These mean
values may, however, strongly depend upon the dynamic response, such
as in the case of vortex induced dynamic 1ift, see Patrikalakis and
Chryssostomidis [34,35]. The solution vector (11.115) for static

calcuiations reduces to

- E .ol oF oNn. . ce]] 11.117
wO_[TO’QO’QO’QO’QO’QO’¢O’80’¢O’XO"YO’ZO’S(}] ( )

with N0=13 unknown scalar variables, where subscript o denctes static
quantities. To simplify the notation, subscript o has been omitted in the
superscripts ¢, £ and n appearing in (I1.117). In the static case the
governing equations symbolically reduce to

Mot '%O(s’;:o) (11.118)
where ?o is a given (nonlinear) vector function of s and Go with N0=13
scalar components. This vector function ?o includes the set of equations
1,2,3,4 and 7 defined above for the dynamic problem with the appropriate
reduction of terms to indicate static response.

Efficient numerical solutions of the static problem for compliant

risers can be found in Chryssostomidis and Patrikalakis [36] for a planar
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buoyant riser configuration without torsion. Efficient numerical
solutions of the general static problem in three dimensions with

spacing varying torsion can be found in Patrikalakis and Chryssostomidis
£37].

Once the static response is determined, the linear dynamic egqua-
tion of compliant risers can be cbtained by subtracting the nonlinear
static equations from the nonlinear dynamic equations in their vector
form and linearizing for small dynamic motions and angles around the
static configuration. The derivation of the Tinear dynamic equations
for compliant risers and their solution using a novel combination of
asymptotic and embedding techniques can be found in Patrikalakis and
Chryssostomidis [38].

The solution of the complete nonlinear dynamic problem for compliant
risers is a subject of current research. The prediction of the external
loads FH and ﬁH is one of the more important factors in a successful
modeling of the static and dynamic behavior of compliant risers. Until
rational methods allow the prediction of these loads in separated flows,
approximate estimates based on strip theory and experimental 2-D flow
models may be used for design purposes, see Patrikalakis [12] and
Patrikalakis and Chryssostomidis [34,35].

11.15 BOUNDARY CONDITIONS
In the case of the static problem N0=13 boundary conditions are
necessary to complete equation (II.118). For the case of a Chinese Lantern

configuration, de 0liveira and Morton [7] and de Oliveira, et al. [8], an
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approximate set of boundary conditions for the static problem involves
prescription of ¢,6,0, X,y and z at s=0 and s=L and s*{(0)=0. For the
case of a catenary configuration, Panicker and Yancey [6], the above
boundary conditions at s=0 need to be modified to also express equilibrium
of interaction forces and moments and kinematic compatibility with the
Jower rigid riser section.

For the case of a Chinese Lantern, an appropriate set of boundary
conditions for the dynamic problem involves prescription of ¢.,0,0,
x,y and z at s=0 and s=L as functions of time and s*(0,t)=0 for 0.
This gives 13 boundary conditions. The remaining six boundary conditions
can be obtained by evaluating the angular velocities at s=0 and s=L
using (I1.37) to (11.39) and the prescribed values of ¢,8,¢ at each end
as a function of time. Alternatively, the remaining six boundary condi-
tions can be obtained by evaluating Xs¥goZy at both ends, or by
evaluating vc,vg,vn at both ends. These velocity components can be ob-

tained by

vV’ = C-[xt,yt,zt]T (11.119)

where the elements of matrix C are given by (I1.15)}. For the catenary
configuration, the boundary conditions at s=|. for the dynamic problem
remain unaltered, while the boundary conditions at s=0 need to be modified
to also express the equilibrium of interaction forces and moments, and
kinematic compatibility with the lower rigid riser.
11.16 INITIAL CONDITIONS

An appropriate set of initial conditions involves the prescription

of Euler angles ¢,6 and ¢, their first partial derivatives with respect to
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time at t=0 and the function s*(s,0) for all s. The prescription
of ¢,6,¢, ¢t’6t and wt for t=0 and all s allows the computation of
all remaining variables comprising the solution vector at time t=0,
11.17 GOVERNING EQUATIONS FOR PLANAR RESPONSE

The governing equations are simplified significantly when
motions are planar in the absence of torsion. We assume that the
plane of motion is the vertical plane U?}, which is assumed to
coincide with plane ZE€ for all points along the riser. In this case,
the solution vector (II1.115) involves only ten non-trivial components

and reduces to

= [T.0%50% 60, y:v8,vE s s%77 (11.120]

The remaining nine components are by assumption zero. The resulting ten

governing eguations are:

TS-Q‘EQn - Wy, + Fa + 4% = m(v%-wnvg) (11.021)
QE + 700 - Wy, + FE + 48 = m(v% + mnvc)+2cpiAiwn (11.122)
(E12n9r55+ Q¢ + 0" = Iy + 2¢3TM0 (I1.123)

— (11.124)




56

xg = (14T/EA) cos¢ (11.125)
y, = (1+T/EA) sing (11.126)
RS (11.127)
v+ e = (14T/ER ) (11.128)
wp = &} (11.129)
sx = 1+T/ER (11.130)
where
¢, T siné (I1.131)
Cop = COSY (11.132)

In the two-dimensional case, we observe that (I1.124) and (11.129) or

(I11.39) lead to
(11.133)

The boundary and initial conditions appropriate for the two-
dimensional problem are obtained from Sections (11.15) and (I1.16) by

eliminating the variables which are jdentically zero.
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Appendix A

BENDING, EXTENSIONAL AND TORSIONAL
RIGIDITY OF A CROSS SECTION

let us consider an arbitrary cross section of a compliant riser

composed from n materials referred to a Cartesian system OXY, as in

the Figure A-1 below:

Figure A.1: Compliant Riser Cross-section
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The cross section is bounded by an outer contour C0 and by inner con-
tours Ci(i=1, ...M). Let P be an arbitrary point on a material of a
cross section fully participating in bending and let E(P} the Young's
modulus of the material at point P. Following Crandall, et al. [19],
p. 424, it is convenient to define the "centroid", C, with a weighing

function equal to E(P), i.e.:
X f dS E(P)X/ s dS E(P) (A.1)
5 )

—
H

c S ds E(P)Y/ s dS E(P) (A.2)
S S
where XC,YC are the coordinates of C and S the surface of the materials
of the cross section participating in bending.
Let us introduce a Cartesian system Cxy with axes Cx and Cy having
the same direction as OX and OY and a system C&n so that the angle be-

tween Cx and CZ is ¢. Using x = x-xc, y = Y-Yc and

£ cos ¢ - 1n sin & (A.3)

X

E sin ¢ + n cos ¢ (A.4)

L
L]

together with (A.1) and (A.2), we find that
S E(P) E dS = J E(P) n dS (A.5)}
S S
The bending rigidities of the cross section about x and y and the

cross product of bending rigidity are defined by
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E1** = s E(P)y“dsS (A.6)
S

E1YY = s E(P)x%ds (A.7)
S

1%y = 5 E(P)xydS (A.8)
S

Considering an elementary area dS of material with coordinates

o
n

x cos ® + y sin ¢ {A.3a)

-x sin & + y cos ¢ (A.4a)

=3
It

and letting,

erf = 7 E(P) n2dsS (A.9)
s

E1" = s E(P)E2dS (A.10)
5

EI®" = s E(P)EndS (A.11)
5

we find following Timoshenko and Young [39], p. 354:

£15%

%(EIXX+EIyy) + %(EIXX-EIyy)cos 26 -

- E1*Ysin 20 (A.12)
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EIM - %(szx+51yy) - %(EIXX-EIyy)cos 20 +
+ EL, sin 20 (A.13)
E1En - %(EIXX—EIyy)sin 26 + E1%Ycos 20 (A.14)

The value of & can be chosen se that EIgg is, for example,

maximum. This requires EIEE = 0 and EIg% < 0. These relations give

Xy
tan 2¢ = _jl_El_____, sin 2¢ < 0 (A.15)

EpYYopr**

If these relations are valid, then EIQn = 0 and Elgg > 0 and therefore
EI™ is simuitaneously minimum. The value of & determined by (A.15)

leads to

E187 = o - (A.16)

The axes CE and Cn corresponding to this value of @ are called centroidal
principal axes and because of (A.5) and (A.16) simplify the constitutive

relations for the rod in bending. When (A.15) is valid, we obtain

2 2 1/2

Lerer?) + [(BEGEDD Ser)) (A.17)

£E
EI 5

1l

1/2
XX_p1yy 2 2
BBy (e 1*Y)y ) (A.18)

S (E1%%+p1YYy - (B >

ro|—
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The definition of the extensional rigidity of the cross section

is
EA = S{ E(P)dS (A.19)

where $' is the surface of the material resisting extension.

Finally, the torsional rigidity GIP of a cross section can be
determined by the stress function method, as described, for example,
in Love [9], Landau and Lifshitz [10] and Timoshenko and Goodier [40].
For complicated sections, approximate expressions for the stress func-
tion can be obtained from an energy method, Timoshenko and Goodier [40].

A1l above derivations assume that the various materials composing
the cross section are uniform and work perfectly together in the corre-
sponding deformation mode; i.e., that the corresponding deformations
are continuous across surfaces of materials taken into account. When
the materials are not uniform {as for example in the case of steel armor
wires protecting pipes made from synthetic materials), more complicated
analysis and, often, experiments are necessary, Timoshenko [41],
de Oliveira and Morton [7] and de Oliveira, et al. [8]. Finally, the
above derivations do not account for changes of the rigidities as a func-

tion of the level of deformation.
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Appendix B

DERIVATION OF CONSTITUTIVE RELATIONS
IN THE Ctnb SYSTEM

Let us assume that the centerline of the rod is a continuous
curve composed of the centroids, €, of all cross sections, where C is
defined in Appendix A. The local tangential, normal and binormal
vectors of the centerline at each C can be defined in terms of the
position vector R of C with respect to an inertial system OXYZ. We
choose OXYZ so that OY is vertical and positive upwards. If, for
example, the lower end of the rod is fixed with respect to the earth,
then we may, for convenience, choose 0 to coincide with the centroid
of the lower end cross section of the rod. Otherwise, we may choose 0
to coincide with a particular convenient point fixed with respect to
the earth. Point C can be identified in terms of s*(s,t), the stretched
arc length from 0 or in terms of s the unstretched arc length from C.
In the subsequent analysis differentiations with respect to s* to de-
termine curvatures and torsion will be replaced by differentiations with
respect to s because the extensional strain e=s;-] is very small compared
to one, Love [9].

Let U be the column triad of unit vectors along 0X, OY and 0Z:
_-k-*.-ET
U =1[773 k] (8.1)

where [ ]T denotes transpose. We may than analyze E, the vector BC, as

E = (x],xz,x3)'u (BZ)
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The tangential unit vector, %, to the centerline at C is defined by

R .
> -+
t = Ry = u:% = (a],az,a3}U=Rs (B.3)

see Eisenhart [26], where subscript s denotes partial derivative with
respect to s, the unstretched arc length of the centerline from the
lower end of the rod, where o = x;* for i = 1,2,3. Since t is a unit
vector, we obtain

> + /2

e = (RS . RS) -1

The normal unit vector, 3, to the centerline at C is defined by

- _1r
n o= kTR = (8,8%,8%) 0 (B.4)
where 81 = K']x;S for i = 1,2,3 and K is the curvature of the centerline

at C, defined by

K= [RI (B.5)

where | | denotes the length of a vector, Eisenhart [26].
The binormal unit vector, E, to the centerline at C is defined so

that n, b and ¥ form a right-handed system:

-+ -+ -
b= txn = (v',v2,x>)U (B.6)
where 'J = K'] (xgxzs-x:xgs) and the indices i,j.k take the values 1,2,3

cyclically, Eisenhart [26].
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The rates of change of ?, n and B with respect to s can be shown

to obey the following identities called Frenet relations:

ts = Kn

- - >
ng = b - Kt
* <+

bs = -Tn

(B.8)

(B.9)

where 1 is the geometric torsion, Eisenhart [26]1, or measure of tortuosity,

Love [9] of the centerline at C. Note that Love [9] uses the symbol 1/

instead of =.

The negative sign is used in equation (B.9) so that the torsion T

is positive when the vector triad £,n,b rotates in a right-handed sense

about T as it progresses along the curve, Hildebrand [42].

that T is given by the following equation:

T = K2R (R xR
s {RggxR (o)
or equivalently
1 2
Xg Xs
_ -2 ] 2
T K det Xeo X
1 2
*sss  Ysss

LS ]

Ly Ly

xSSS

-

1t can be shown

(B.10)

where det [.] denotes the determinant of a matrix, Eisenhart [26]. From

the definition of T it follows that T is zero for a plane curve, Eisenhart [26].
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For a fixed time, the change of vector T between two neighboring
points of the centerline is dt = aéxf, where 3@ is the vector of the
angle of infinitesimal rotation of the system ngﬁ at stds relative to
the system ngﬁ at s. Therefore, dividing by ds and using equation {1I1.10)

we find that
ts =Qxt (BJ1)
Using equations (B.11), {(B.6) and (B.7) we find that

&+ + > > > + > > > -+

-> <+ + >
t x (Qxt) = {t-t)a-(t'Q)t = txt

g = Ktxn = Kb
: . -+ = - >
and therefore, since 0% =g = t-q
> - C+
Q=Kb+ 0" ¢t {B.12)

Let f be the angle between n and ﬁ, as in Figure B.1, Love [9], and
21, 22, 23 the direction cosines of b with respect to CEEH. Using (B.9)

we find that

_ 2 2
T Ay R, F L (B.13)
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Figure B.1: Coordinate System for a Cross-section

where, of course, %, = 0, because B-7 = 0 and as in equations (B.1)
to {B.11) subscript s denotes the total derivative with respect to s
for a fixed time t.
Using the decompositions of q = [QC,QE,Qn]-U“ and of eguation {B.12)

we find that

=
]
1
Fe)
Jr
-~
H

-cos T (B.14)

=
]
2
=3
ray
I

Sin f (B-TS)
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with
KZ - of 4 an (B.16)
and

tan f = -0/0° (8. 17)

see Love [9].

Using the fact that
by = (b.) oy + Sﬁb
s B.
s Czen (8.18)

see Landau and Lifshitz [10] and Crandall, et al. [18], or explicitly

I oAb e - _ ok
225 sinf fs 7 sinf and 235 cosf fs Q° cosf

and substituting in equation (B.13), we find that:

at = fs + T (8. 19)

where the convention that Zfn and thb are right-handed systems is used,
see Love [9]. Alternatively equation (B.19} can be obtained by using
b = QZE+R33 and noting that the left-hand side of equation {B.18) is
equal to -tn and the right-hand side is equal to fs(sinf€+cosfﬁ)-
Esinfﬂg-ﬁcosfﬂc+f(ﬂgsinf+9ncosf) and multiplying both sides by n.

We are now in a position to express the components of the bending
moment along B and 1 in terms of its components along Z and 7 by the

relations:
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M = B cos £ + MV sin f
M = M5 gin f+ M7 cos f
Using (11.11}, {B.14) and (B.15) we obtain
W = K[E1EEcos?F + EIMsinf]
M= % K[ET™ - EIPE] sin of
We now express 156 and EI™ in terms of EI™, E1°0 and EI"P

(8.20)

(B.21)

(B.22)

(B.23)

using

the relations (A.12) to (A.14) and (A.16)}, where ¢=f-n/2 and x,y of

Figure A-1 are replaced by f, b of Figure B.1, respectively:

E15E - (E1M-E1PP)cos2F+ET s in2f

1
"2

b

eI = e+ E17) JET™-£1™)cos2f-E1" sin2f

nb

1]
|\jq_.a

EI

Using (B.22) and (B.26) we therefore find that

(B.24)

{B.25)

(B.26)
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bb

M” = EI7.K (B.27)

MM = g1nPey (8.28)

These equations imply that in rotationally uniform rods, where
EI"=0, the bending moment is exclusively directed in the local b
direction, Love [9]. The approximation M"=0 was, for example, used
in the modelling of conventional risers, Patrikalakis [12], Nordgren

[11,13] and Garrett [14].

© e ——pp———
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Appendix C

CONSTITUTIVE RELATION BETWEEN
T and e

Introduction

For the case of a cable composed of a homogeneous, isotropic and
linearly elastic material, Goodman and Breslin [28] showed that tension

in the material P and small extensional strain of the centerline are

related by:

P = ERe-2vA Py (c.1

where EA is the extensional rigidity of the cable, v Poisson's ratio

and Po the water head. For a cable the effective tension is

T=FP+ Pohy (C.2)

and therefore,

T=EA e+(1-2u)p0A0 (C.3)

Previous investigators, such as Goodman and Breslin [28], Triantafylilou [22],
Triantafyllou and Bliek [23], Bliek [24] and Triantafyllou, et al. [25],

used a Poisson's ratio v = 1/2 because of the simplification of the constitu-
tive relation and subsequent analysis. The assumption v = 1/2 for a cable

element is equivalent to zero volume expansion, Timoshenko and Goodier [40]

and leads to:

T=FEAe (C.4)
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Values of Poisson's ratio for engineering materials vary from 0.1 for
concrete to 0.5 for rubber. For most metals it is between 0.25 and

0.35, see Harris and Crede [43].

Analysis for the Case of a Uniform Cylindrical Tube

We start with a straight unstretched differential element of the
tube, ds, in air bounded by two adjacent cross-sections and with inner
and outer radii equal to rs and o2 respectively. The tube is filled

with a liquid of density P4 and an internal overpressure, p, above the

atmospheric is applied. Finally the tube is immersed in a liquid of
density O and is subjected to external loads. Under the action of all
loads ds extends to ds*, so that the extensiornal strain of the centerline
is
e =5s5_ -1 (C.5)

It is assumed that e << 1. 1In addition the centerline of the tube is nec
Tonger straight. In the sequel we perform an approximate analysis to
determine the relation between tension, P, and small extensional strain, e,

assuming that ds* js straight and additionally that:

1. The cross section remains circular under the action of all loads.

This is very accurate if 2r0/(ro-r1) is less than 25 to 30 and the curvature

is not very large, von Karman [44].

2. The normal stresses parallel to ¥ due to tension are constant

throughout the material cross-section.
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3. The radii o and r, are small compared to the length of the
tube so that the internal and external hydrostatic pressures are
essentially constant for all points of each cross-section; i.e., the
loading is axisymmetric.

4. Shear stresses are negligible.

5. Body (gravity) forces are neglected from the field equations
of elastic stress equi]ibfium because their global effect is reflected

in the value of the tension.

Using a Tocal cylindrical coordinate system (r,6,z) where r is the radius,
6 the polar angle and z the tangential distance, we find that o., o, and
o, are independent of 6 and that we need to satisfy the following equation

of equilibrium in the radial direction

filo] c_~0
_§$ ¥ r-r 2= 0 (C.6)
where
o, = (1= B ueg) + vivi) o] (c.7)
Of = {1-v2)'1[E(Ee+vsr) + vivila,] (C.8)
Er = %}i{_» E6=% (C-g)




77

and Epns € aTe the radial and circumferential strains and u the radial

displacement. Using (C.6) to (C.9) and our assumptions we obtain
2 o C.10)
rouL,. + ru.-u 0 {

which has the following general solution

- B

The boundary conditions are

Cp = =Py at r=r, and Oy = =P, at rer, (C.11)
where Py =P + Dig(hi-Y)s Po © Dwg(hw-Y)
Equations {C.7), (C.8) and (€.11) lead to ]
¢ 2
1-v Pi"s -Po'e v (C.12)
A= A - G
£ Z 2 E ~2Z
Y‘o = l“_i
2.2
ror.
_ Wy o i _ .13
B=F 7 (pyp) (€.13)
ro-rs
o i
Using (C.7) to (C.9) and {C.12}, (C.13)} we find that
2 2
ri-p.r
G, + 0, = 2 P17iP0 o (C.14)
r 3 re -
0 i

which is independent of r and because of
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1
3 [cz - vic.o,)] (C.15)

the resulting extensional strain €, is uniform throughout the cross

sectional (i.e., equal to e) and can be estimated from

2 2
. = 97 2y Pi"i Po"o (C.16)
z” TETE 2,2 ’
o i
where
o, = P/A and A=w(r2-r2) {(C.17)
z Vo i ’
Using A =rr2 and A. = ﬂr? we find that
o o i i
P=ERe + 2“(piA1‘pvo) {C.18)
Using the definition of the effective tension T (11.91.2)

where the term piCZAi has been neglected because pic2<<pi, we obtain

€.20
T = gAe + (1-2v)(p A, -PiAs) (C.20)

which is the required constitutive relation between T and e.
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For the reasons given in the Introduction, we will adopt the value

v = 1/2, which leads to
T = EhAe (C.21)
We will continue to use (C.21) for multiTayer tubes and multitube con-

figurations where EA is taken equal to the overall extensional rigidity

of the riser,




